
Quantum Mechanics I
Week 3 (Solutions)

Spring Semester 2025

1 Compatible Observables
We consider the two observables ξ and η acting in a three-dimensional Hilbert space. In
the standard basis (|1⟩, |2⟩, |3⟩) their matrix representation looks as follows:

ξ →

ξ1 0 0
0 ξ2 0
0 0 ξ3

 , η →

 0 γ 0
γ∗ 0 0
0 0 η3

 , (1.1)

where ξ1 ̸= ξ3 and ξ2 ̸= ξ3.

1. Under which conditions on the entries of the above matrix representations are the
two observables compatible?

By calculating the commutator we get:

[ξ, η] = ξη − ηξ =

 0 (ξ1 − ξ2)γ 0
(ξ2 − ξ1)γ

∗ 0 0
0 0 0


(1.2)

Consequently, the two operators are only compatible (i.e., they commute) when
ξ1 = ξ2 or γ = 0. In the following, we assume ξ1 = ξ2.

2. In the case in which the two observables are compatible: Find the basis that
diagonalizes both observables simultaneously. Are the two observables a complete
set of observables that commute?

With ξ1 = ξ2, the two matrices commute: indeed, the first is diagonal and, when the
second consists of a non-diagonal 2× 2 block, the first is a multiple of the identity.
To find the basis in which they are simultaneously diagonal, it suffices to diagonalize
the 2 × 2 block: since its trace is 0 and the determinant is −|γ|2, the eigenvalues
are ±|γ| and, by putting γ = |γ|eiϕ, the eigenstates are:

|1̃⟩ ≡ 1√
2
(|1⟩+ e−iϕ|2⟩), |2̃⟩ ≡ 1√

2
(|1⟩ − e−iϕ|2⟩).

In the new basis |1̃⟩, |2̃⟩, |3̃⟩ = |3⟩, the representation of the two observables is:

ξ →

ξ ξ
ξ3

 , η →

|γ|
−|γ|

η3

 , (1.3)
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where ξ ̸= ξ3. The two observables form a complete set of commuting observables
if there are no equal pairs of eigenvalues, i.e., if (ξ1, |γ|), (ξ2,−|γ|), (ξ3, η3) are all
different, i.e., if γ ̸= 0.

Note: A pair of observables is called a complete set of commuting observables if
these observables commute and we can identify a unique eigenvector (up to phase)
for each set of eigenvalues of these operators.

3. Is it possible that an operator (a matrix) is at the same time unitary and Hermitian?
If yes, give examples.

From the conditions of unitarity Û Û † = 1 and hermiticity Û † = Û of the operator, it
follows that Û2 = 1. An operator with the two eigenvalues ±1 has such properties.
Typical examples are the Pauli matrices, for which we have σ2

i = 1.

2 Quantum States for Spin-1/2 Particles
Note on the notation: For the spin operators, we will express any eigenvector as
|Sz; +⟩, where in the first entry we will have the relevant operator (to which this state
corresponds to), and in the second entry the sign of the eigenvalue to which this ket
corresponds to. Thus for the eigenvectors of Ŝz, we have |Sz; +⟩, |Sz;−⟩.

A. The state representing the spin of an electron is given in the basis Sz as follows:

|ψ1⟩ = |Sz; +⟩+
√
2 |Sz;−⟩ . (2.1)

(i) Normalize the state |Ψ1⟩.
The normalization condition requires ⟨Ψ1|Ψ1⟩ = 1. Thus, we have:

⟨ψ1|ψ1⟩ = 3

where we have used the orthonormality condition of the eigenvectors of Sz, i.e.
⟨Sz; i|Sz; j⟩ = δij where i, j ∈ {−1,+1}. Thus the new state is:

|Ψ1⟩ =
|ψ1⟩√
⟨ψ1|ψ1⟩

=
1√
3
|Sz; +⟩+

√
2

3
|Sz;−⟩ . (2.2)

(ii) What is the probability to find the electron in a spin |Sz; +⟩ state in a measurement
of the Sz? Repeat for |Sz;−⟩.
The probabilities are obtained from the coefficients

P± = | ⟨Sz;±|Ψ1⟩ |2 . (2.3)

Thus, we have P+ = 1/3 and P− = 2/3.
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(iii) What is the expectation value of Sz?

The expectation value is computed by ⟨Sz⟩ = ⟨Ψ1|Sz|Ψ1⟩ and found to be equal
to −ℏ/6. We have used the orthonormality condition of the eigenvectors of Sz, i.e.
⟨Sz; i|Sz; j⟩ = δij where i, j ∈ {−1,+1}, and the action of Sz on its eigenvectors.

(iv) We would like to perform a measurement of Sx. To do this, express the state |Ψ1⟩
in the basis of Sx (|Sx;±⟩), and calculate the probability of measuring |Sx; +⟩ and
|Sx;−⟩.
The state |Ψ1⟩ expressed in the basis of Sx is:

|Ψ1⟩ = |Sx; +⟩ ⟨Sx; +|Ψ1⟩+ |Sx;−⟩ ⟨Sx;−|Ψ1⟩ . (2.4)

We need to compute the overlaps of the eigenvectors of Sx with Sz.

⟨Sx; +|Sz; +⟩ = 1√
2
, ⟨Sx; +|Sz;−⟩ = 1√

2
,

⟨Sx;−|Sz; +⟩ = 1√
2
, ⟨Sx;−|Sz;−⟩ = − 1√

2
.

Then, using the above in Eq. (2.4), we find:

|Ψ⟩ = |Sx; +⟩ (1 +
√
2)√

6
+ |Sx;−⟩ (1−

√
2)√

6
. (2.5)

The probabilities are:

P+ =
3 + 2

√
2

6
, P− =

3− 2
√
2

6
. (2.6)

B. Given the following state expressed in the basis Sz:

|Ψ2⟩ =
1√
3
|Sz; +⟩+

√
2eiπ/6√
3

|Sz;−⟩ . (2.7)

(i) Verify that this state is normalized.

The normalization condition requires ⟨Ψ2|Ψ2⟩ = 1. Thus, we have:

⟨Ψ2|Ψ2⟩ =
1

3
+

2|eiπ/6|2

3
= 1 ,

where we have used the orthonormality condition of the eigenvectors of Sz, i.e.
⟨Sz; i|Sz; j⟩ = δij where i, j ∈ {−1,+1}.

(ii) Give the matrix representation of the observable Sϕ = cosϕSx + sinϕSy.

Using Sx = ℏ/2σx and Sy = ℏ/2σy, where σx, σy are Pauli matrices, we obtain:

Sϕ =
ℏ
2

(
0 e−iϕ

eiϕ 0

)
. (2.8)
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(iii) Calculate the expectation value of Sϕ for state |Ψ2⟩.
We compute the expectation value using the matrix form of the operator Sϕ and
the vector form of the state |Ψ2⟩,

⟨Ψ2|Sϕ|Ψ2⟩ =

(
1√
3

√
2

3
e−iπ/6

)
ℏ
2

(
0 e−iϕ

eiϕ 0

)( 1√
3√

2
3
eiπ/6

)

=
ℏ
2

(
1√
3

√
2

3
e−iπ/6

)(√
2
3
e−iϕeiπ/6

1√
3
eiϕ

)

=
ℏ
2

√
2

3

(
ei(π/6−ϕ) + e−i(π/6−ϕ)

)
=

ℏ
√
2

3
cos(π/6− ϕ).

(iv) What is the uncertainty ∆Sϕ given |Ψ2⟩? Note: (∆Sϕ)
2 = ⟨(Sϕ − ⟨Sϕ⟩)2⟩.

For the uncertainty of Sϕ, defined by ⟨(∆Sϕ)
2⟩ =

〈
(Sϕ − ⟨Sϕ⟩)2

〉
, we use the identity〈

(X − ⟨X⟩)2
〉
= ⟨X2⟩ − ⟨X⟩2. Since

〈
S2
ϕ

〉
= ℏ2

4
, we simply have

〈
(∆Sϕ)

2
〉
=

ℏ2

4
− ℏ2

9
2 cos2(π/6− ϕ) =

ℏ2

4

(
1− 8

9
cos2(π/6− ϕ)

)
.

(v) Calculate the uncertainty of the observable Sθ = cos θSz + sin θSx given the state
|Sz; +⟩. Does the result meet your expectations?

We can write the average value in terms of the dot product :

⟨Sz; +|Sθ|Sz; +⟩ =
(
1 0

)ℏ
2

(
cos θ sin θ
sin θ − cos θ

)(
1
0

)
=

ℏ
2
cos θ. (2.9)

The uncertainty is calculated as usual:〈
(∆Sθ)

2
〉
=
〈
S2
θ

〉
− ⟨Sθ⟩2 =

ℏ2

4
sin2 θ . (2.10)

The expectation value is taken in the state |Sz; +⟩.

The Sθ operator performs a θ angle rotation. Therefore, the overlap between the
initial state |Sz; +⟩ and the rotated state depends on the angle of rotation. As
expected, we observe that for an angle rotation θ = π

2
, the states Sθ|Sz; +⟩ = |Sz;−⟩

and |Sz; +⟩ are orthogonal and the mean value is 0. The uncertainty is maximized
in this case. When θ = 0, then the mean value is ℏ/2 as expected since Sθ|Sz; +⟩ =
|Sz; +⟩, and the uncertainty is zero.
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3 Change of Spin Basis

Consider the operators Â, B̂ with

Â |ai⟩ = ai |ai⟩ , B̂ |bi⟩ = bi |bi⟩ . (3.1)

We are interested in finding the unitary matrix U that allows for a change of basis,

|bi⟩ = Uab |ai⟩ . (3.2)

where |ai⟩ , |bi⟩ are the eigenvectors in the old and new basis, respectively.

(a) Consider Â = Ŝz and B̂ = Ŝx. Find the unitary matrix Û .

The eigenvectors of Sx = ℏ
2
σx are (in the basis where Sz is diagonal)

|Sx; +⟩ = 1√
2

(
1
1

)
, |Sx;−⟩ = 1√

2

(
1
−1

)
.

We can find the transformation matrix which connects the eigenvectors of Sz and
Sx.

Uxz =
1√
2

(
1 1
1 −1

)
.

The elements of this matrix are obtained in the Sz representation by multiplying
Eq. (3.2) (for the case of the spin states) with ⟨Sz; j|:

⟨Sz; j|Uxz |Sz; i⟩ = ⟨Sz; j|Sx; i⟩ ,

where i, j ∈ {±}.

(b) This transformation may now be written as:

U =
∑
j

|bj⟩ ⟨aj| . (3.3)

Confirm that you obtain the correct result when you apply this unitary
transformation to the old basis eigen-kets.

We can immediately find that the transformation matrix can be written as

Uxz = |Sx; +⟩ ⟨Sz; +|+ |Sx;−⟩ ⟨Sz;−| = 1√
2

(
1
1

)
(1 0)+

1√
2

(
1
−1

)
(0 1) , (3.4)

and we can verify that this is the same transformation matrix we got in the previous
question.

Page 5 of 9



(c) Repeat Questions (a,b) for Â = Ŝz and B̂ = Ŝy.

Given that the eigenvalues of Sy are

|Sy; +⟩ = 1√
2

(
1
i

)
, |Sy;−⟩ = 1√

2

(
1
−i

)
,

it can be found that
Uyz =

1√
2

(
1 1
i −i

)
where

⟨Sz; j|Uyz |Sz; i⟩ = ⟨Sz; j|Sy; i⟩ ,
where i, j ∈ {±}. The transformation matrix can be written as

Uyz = |Sy; +⟩ ⟨Sz; +|+ |Sy;−⟩ ⟨Sz;−| = 1√
2

(
1
i

)
(1 0) +

1√
2

(
1
−i

)
(0 1) .

(d) Find the representation of Sy in the eigenbasis of Sx.

We are looking for a unitary transformation U which diagonalizes Sx (USxU
† = Sz).

We can take for example U = Uxz and so we have

Sy → S̄y = UxzSyU
†
xz =

ℏ
2

(
0 i
−i 0

)
= −Sy, Sx → S̄x = Sz, Sz → S̄z = Sx.

One can verify that the matrices S̄x, S̄y, S̄z satisfy the usual spin commutation
relation.

4 Sequential Stern-Gerlach Experiment
A beam of spin-1/2 atoms goes through a sequence of Stern-Gerlach experiments as
follows:

x xn

Figure 1: A sequential Stern-Gerlach Experiment

The measurement scheme is as follows:

i) The first measurement accepts atoms with Sx = ℏ/2 and rejects atoms with Sx =
−ℏ/2.
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ii) The second measurement accepts atoms with spin Sn⃗ = ℏ/2 and rejects atoms with
Sn⃗ = −ℏ/2, where n⃗ is some unit vector and Sn⃗ are the eigenvalues of the operator
Ŝn⃗ = n⃗ · S⃗.

iii) The third and final measurement is along the x-axis, and the distribution of each
eigenvectors is projected on the screen.

We aim to determine the outcome on the screen. We will proceed with this in steps. First,
we need to establish the orthonormal basis for each observable to be measured.

(a) Diagonalize the Ŝx matrix. Find the eigenvalues and eigenvectors |Sx;±⟩ of this
matrix.
The matrix representation of Ŝx is known

Sx =
ℏ
2

(
0 1
1 0

)
. (4.1)

We apply the diagonalization procedure and find the eigenvalues as ±ℏ/2 with
corresponding eigenvectors

|Sx; +⟩ = 1√
2

(
1
1

)
, |Sx;−⟩ = 1√

2

(
1
−1

)
. (4.2)

(b) Now, consider the following operator which expresses the projection of the spin
operator S⃗ along a unit vector n⃗

Ŝn⃗ = n⃗ · S⃗ , (4.3)

where the unit vector n̂ is expressed in spherical coordinates as n⃗ = sin θ cosϕx̂ +
sin θ sinϕŷ + cos θẑ and the spin operator is S⃗ = Sxx̂ + Syŷ + Sz ẑ. The angles ϕ
and θ correspond to the azimuthal and polar angles, respectively, as defined in the
spherical coordinate system. Find the matrix form of this operator.
We use the matrix representation of each component of the spin operator:

Ŝx =
ℏ
2
σ̂x, Ŝy =

ℏ
2
σ̂y, Ŝz =

ℏ
2
σ̂z , (4.4)

where σ̂j, j ∈ {x, y, z} are the Pauli matrices.

Then the matrix form of the operator Ŝn⃗ reads

Ŝn⃗ =
ℏ
2
(σ̂x sin θ cosϕ+ σ̂y sin θ sinϕ+ σ̂z cos θ) =

ℏ
2

(
cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)
. (4.5)

(c) Find the eigenvalues and eigenvectors of this matrix. Show that these are:

|Sn⃗; +⟩ =
(

cos θ
2

sin θ
2
eiϕ

)
, |Sn⃗;−⟩ =

(
− sin θ

2
eiϕ

cos θ
2

)
. (4.6)

Diagonalizing the matrix Ŝn⃗ we find the following eigenvalues ±ℏ/2. The
corresponding normalized eigenvectors |Sn⃗;±⟩ are found in the usual way, under
the constraint of normalization.
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(d) For the rest of this exercise, we consider a unit vector n̂ along the xy-plane. What
form does the operator S⃗n⃗ take, and consequently its eigenvectors?

A unit vector on the xy-plane corresponds to θ = π/2 and varying azimuthal angle
ϕ, thus n⃗ = cosϕx̂+ sinϕŷ. The matrix form of Ŝn⃗ is reduced to:

Ŝn⃗ =
ℏ
2

(
0 e−iϕ

eiϕ 0

)
. (4.7)

The corresponding eigenvectors simply become:

|Sn⃗; +⟩ = 1√
2

(
1
eiϕ

)
, |Sn⃗;−⟩ = 1√

2

(
−eiϕ
1

)
. (4.8)

Having established the orthonormal bases that we will need to describe our experiment,
let us consider the initial state:

|ψ⟩ = 1√
2

(
|Sx; +⟩+ |Sx;−⟩

)
. (4.9)

(e) What are the intensities of the final beams for the outcomes Sx = ±ℏ/2 if the
outgoing beam from the first measurement is normalized to 1? You answer should
be expressed in terms of the relevant spherical angle from Question (d).

The outgoing beam from the first measurement is |ψ⟩ = |Sx; +⟩, normalized to unity.
Then, after the second measurement, we must project |ψ⟩ onto the eigenbasis of Sn⃗,
and we do this by using the resolution of identity:

|ψ⟩ = 1 |ψ⟩ =
∑
j

|Sn⃗; j⟩ ⟨Sn⃗; j|ψ⟩ = |Sn⃗; +⟩ ⟨Sn⃗; +|ψ⟩+ |Sn⃗;−⟩ ⟨Sn⃗;−|ψ⟩ . (4.10)

After the second measurement, we retain |ψ′⟩ = |Sn⃗; +⟩ ⟨Sn⃗; +|ψ⟩. Then, after the
third measurement, we once again project onto the Sx basis, i.e.

|ψ′⟩ = 1 |ψ′⟩ =

=
∑
j

|Sx; j⟩ ⟨Sx; j|ψ′⟩ =

= |Sx; +⟩ ⟨Sx; +|ψ′⟩+ |Sx;−⟩ ⟨Sx;−|ψ′⟩ =
= |Sx; +⟩ ⟨Sx; +|Sn⃗; +⟩ ⟨Sn⃗; +|ψ⟩+ |Sx;−⟩ ⟨Sx;−|Sn⃗; +⟩ ⟨Sn⃗; +|ψ⟩ .

Replacing |ψ⟩ = |Sx; +⟩, we get:

|ψ′⟩ = |Sx; +⟩ ⟨Sx; +|Sn⃗; +⟩ ⟨Sn⃗; +|Sx; +⟩+ |Sx;−⟩ ⟨Sx;−|Sn⃗; +⟩ ⟨Sn⃗; +|Sx; +⟩ .

The intensities of the outgoing beams are taken as the coefficients (squared-modulus)
of the final state:

I+ = | ⟨Sx; +|Sn⃗; +⟩ ⟨Sn⃗; +|Sx; +⟩ |2, I− = | ⟨Sx;−|Sn⃗; +⟩ ⟨Sn⃗; +|Sx; +⟩ |2 . (4.11)

Page 8 of 9



To find the intensities, we now compute the following overlaps

⟨Sx; +|Sn⃗; +⟩ = 1√
2

[
⟨Sz; +|+ ⟨Sz;−|

]
· 1√

2

[
|Sz; +⟩+ eiϕ |Sz;−⟩

]
=

1

2
(1 + eiϕ)

⟨Sx;−|Sn⃗; +⟩ = 1√
2

[
⟨Sz; +| − ⟨Sz;−|

]
· 1√

2

[
|Sz; +⟩+ eiϕ |Sz;−⟩

]
=

1

2
(1− eiϕ)

Using the overlaps in the expressions for the intensities, we find

I+ = cos4
ϕ

2
, I− = sin2 ϕ

2
cos2

ϕ

2
.

In the above we used trigonometric identities cosϕ = 2 cos2 ϕ
2
− 1 and sinϕ =

2 sin ϕ
2
cos ϕ

2
.

(f) What is the best choice for the spherical angle to maximize the intensity of the
beam with Sx = +ℏ/2?
The best choice will be to choose ϕ = 0 (in the range ϕ ∈ [0, 2π[), for which we have
I+ = 1, I− = 0. Notice that this case corresponds to Sn⃗ = Sx, and thus both the
second and third measurements are taken along Sx. Consequently, the probability
of measuring |Sx; +⟩ at the end will be one.

(g) What is the best choice for the spherical angle to maximize the intensity of the
beam with Sx = −ℏ/2?
The best choice will be to choose ϕ = π/2, 3π/2. These choices correspond to
I− = I+ = 1/4.
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